Diagnostic Imaging Working Group

Principles to Ensure Best Practice for Heart Failure *Echocardiography* Services in British Columbia

Co-Chairs
- Dr Ken Gin (Echocardiography Lead)
- Dr Marla Kiess (Nuclear Cardiology Lead)
- Bonnie Catlin (Provincial HF CNS)
Diagnostic Imaging Working Group Members

Clinical Members:
Chair: Dr Ken Gin FRCPC, Cardiologist
Dr Marla Kiess FRCPC, Cardiologist, St Pauls Hospital, Providence Health Care
Bonnie Catlin RN, MScN Provincial HF Clinical Nurse Specialist, Cardiac Services BC
Dr Richard Bon FRCPC, Cardiologist Surrey Memorial Hospital, Fraser Health
Dr Frank Halperin FRCPC, Cardiologist, Kelowna General Hospital, Interior Health
Dr Firas Mansour FRCPC, Internist, University Hospital Northern BC, Northern Health
Dr Haidar Hadi, MRCP CESR (UK), Cardiologist, University Hospital Northern BC, Northern Health
Dr Teddi Orenstein FRCPC, Cardiologist, Richmond Hospital, Vancouver Coastal Health
Dr John Vyselaar FRCPC, Cardiologist, Lions Gate Hospital, Vancouver Coastal Health
Dr Chris Thompson FRCPC, Cardiologist, St Pauls Hospital, Providence Health Care
Dr Chris Hunt FRCPC, Primary Care Physician, St Pauls Hospital, Providence Health Care
Dr Manjeet Mann FRCPC, Cardiologist, Royal Jubilee Hospital, Vancouver Island Health Authority

Administrative Members
Janice Reid, CRGS, CRCS , RT(R) Ultrasound Supervisor, Medical Imaging, Richmond Hospital, Vancouver Coastal Health
Pat Wrigley, Manager Clinical & Business Systems- Cardiac Program, Fraser Health
Marie Hawkins, Cardiac Network Director, Interior Health
Barbara Hennessy, Regional Coordinator, Cardiac and Cerebrovascular Services, Northern Health
Sandy Barr, Regional Cardiac Program Director, Vancouver Coastal and Providence Health Care
Patricia Proctor, Clinical Engagement Leader IM/IT, Vancouver Island Health Authority
Sonya Rinzema, Manager, Cardiac Rehab, Heart Function, Atrial Fibrillation, Echocardiography, Royal Jubilee Hospital, Vancouver Island Health Authority
Mike Nader, Executive Director, Lower Mainland Diagnostic Imaging, Vancouver Coastal Health
Susan Larson, Regional Director Diagnostic Imaging, Fraser Health AND New Director Diagnostic Imaging Lower Mainland Consolidation, Provincial Health Services Authority
Justin LoChang, Cardiac Services BC

Additional Members Consulted
Dr Rob Colistro, Radiologist Kelowna General Hospital, Interior Health
Dr Kelly Masuo, Radiologist, Royal Jubilee Hospital, Vancouver Island Health
Zeno Cescon, Regional Director Diagnostic Imaging, Interior Health

Additional Reviewers
Dr John Imrie, FRCPC, Cardiologist, Lions Gate Hospital, Vancouver Coastal Health
Dr Sam Doe, FRCPC, Cardiologist, Lions Gate Hospital, Vancouver Coastal Health
Dr Simon Bicknell, Radiologist, Lions Gate Hospital, Vancouver Coastal Health
Dr Sven Aippersbach, Radiologist, Lions Gate Hospital, Vancouver Coastal Health
Dr Dave Spouge, Radiologist, Lions Gate Hospital, Vancouver Coastal Health
Dr Jenny Su, Radiologist, Lions Gate Hospital, Vancouver Coastal Health
Dr Catherine Phillips, Radiologist, Lions Gate Hospital, Vancouver Coastal Health
Dr Kapil Bhagirath, FRCPC, Cardiologist, Surrey Memorial Hospital, Fraser Health
1. Sonographers:
 a. Recommendation: Prefer sonographers to have extra training in cardiac ultrasound prior to being hired into the department.

2. All hospital Echocardiography referral forms must contain the provincially identified key elements for an Echocardiography referral form OR a hospital may adopt the Standardized Provincial Echocardiography referral form.

3. Adopt the American Society Echocardiography (ASE) definitions for:
 a. Right Atrium
 b. Right Ventricle Wall Thickness
 c. Right Ventricular Outflow Tract
 d. Right Ventricle Dimensions
 e. Right Ventricle Systolic Function
 f. Right Atrial Pressure
 g. Peak Systolic Pulmonary Pressure
 h. Left Atrial Volume
 i. Left Ventricle Dimensions and Mass
 j. Left Ventricle Ejection Fraction

4. Prior to procedure patients:
 a. Height and weight must be documented
 i. BSA should be calculated
 b. Heart rate, heart rhythm and blood pressure should be documented
 i. Blood pressure measurement may be particularly useful in patients with mitral regurgitation or heart failure

5. Both systolic and diastolic function should be measured, documented and reported especially when the indication includes heart failure, shortness of breath, hypertension, left ventricular function.

6. A comprehensive 2 dimension and M mode, doppler study should be performed in order to determine the mechanism of congestive symptoms. This should include an assessment of the left and right heart function, size, volume, left sided filling pressure (diastolic function), right atrial pressure, pulmonary artery pressure, valves and pericardium. Details on recommendations for measuring and reference values are outlined in Appendix 1.
7. Minimum data elements that should be measure
 i. Quantification of all measurements
 ii. Left Ventricular (LV) dimensions
 - Septal and posterior wall thickness
 - Indexed LVIDd
 - Indexed LV End Diastolic Volume (LVEDV)
 - LV Mass
 - Qualitative Function
 - Left Ventricle (LV) cavity at end diastole and end systole
 - Quantitative Ejection Fraction should be performed when possible provided image quality is adequate. If visual estimate of the LVEF is abnormal then quantitative EF is mandatory, when image quality is adequate. It is also recommended that LVEF quantification using the Modified Simpson’ or 3D method be employed. The visual EF and quantitative EF should correspond.

<table>
<thead>
<tr>
<th>Reference Values for LVEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejection Fraction (%)</td>
</tr>
<tr>
<td>Normal >greater than or equal to 55</td>
</tr>
<tr>
<td>Mild Dysfunction 45-54</td>
</tr>
<tr>
<td>Moderate Dysfunction 30-44</td>
</tr>
<tr>
<td>Severe Dysfunction <30</td>
</tr>
</tbody>
</table>

* Contrast opacification should be considered in cases of poor image quality or where there are concerns regarding the possible presence of left ventricular thrombus

iii. Left Atrium (LA) dimensions
 - Basal Minor Axis Dimension
 - Volumes
 - Qualitative Function

iv. Right Ventricle (RV) dimensions
 - Volume
 - Wall thickness
 - Systolic function
 - Outflow tract
 - Tricuspid annular plane systolic excursion

v. Right Atrium
 - Minor Axis Dimension Area
 - Pressures
vi. Hemodynamics
 • Right Atrial Pressure
 • Systolic Pulmonary Pressure

vii. Diastolic Parameters
 • Mitral E/A
 • Mitral decel Time
 • Septal e’
 • Lateral e’
 • E/e’ Septal, E/e’ lateral, E/e’ average
 • Valsalvin
 • LA volume
 • PA systolic pressure
 • Optimal
 i. Ar-A
 ii. E/VP
 iii. IVRT
 iv. Pulmonary vein
Diastolic Dysfunction: Estimation of Left Ventricular Filling Pressures in Patients with Normal EF

- **E/e' ≤ 8** (Sep, Lat, or Av.)
 - LA volume < 34 ml/m²
 - Ar - A < 0 ms
 - Valsalva Δ E/A < 0.5
 - PAS < 30 mmHg
 - IVRT/T ≥ 0.2
 - **Normal LAP**

- **E/e' 9-14**
 - LA volume ≥ 34 ml/m²
 - Ar - A ≥ 30 ms
 - Valsalva Δ E/A ≥ 0.5
 - PAS > 35 mmHg
 - IVRT/T ≥ 0.2
 - **Normal LAP**

- **Septal E/e' ≥ 15** or
 - Lat. E/e' ≥ 12
 - Or
 - Av. E/e' ≥ 13
 - **↑ LAP**

Mandatory Parameters in RED

- Diastolic function will be reported as indeterminate when paced.
- In atrial fibrillation diastolic function reported as indeterminate when average E/e > 13, increased left atrial pressure is present.
- Diastolic function should be reported as indeterminate in the presence of severe mitral annular calcification (MAC) prosthetic mitral valve.
Diastolic Dysfunction: Estimation of Left Ventricular Filling Pressures in Patients with Depressed EF

Mitral E/A

- E/A < 1 and E ≤ 50 cm/s
- E/A ≥ 1 - < 2, or E/A < 1 and E > 50 cm/s
- E/A ≥ 2, DT < 150 ms

E/e' (average e') < 8
- E/Vp < 1.4
- S/D > 1
- Ar - A < 0 ms
- Valsalva Δ E/A < 0.5
- PAS < 30 mmHg
- IVRT/T e' < 2

Normal LAP

E/e' (average e') > 15
- E/Vp ≥ 2.5
- S/D < 1
- Ar - A ≥ 30 ms
- Valsalva Δ E/A ≥ 0.5
- PAS > 35 mmHg
- IVRT/T e' < 2

↑ LAP

Mandatory Parameters in RED

- Diastolic function will be reported as indeterminate when paced.
- In atrial fibrillation diastolic function reported as indeterminate when average E/e > 13, increased left atrial pressure is present.
- Diastolic function should be reported as indeterminate in the presence of severe mitral annular calcification (MAC) or prosthetic mitral valve.
Practical Approach to Grade Diastolic Dysfunction

- **Septal e’ > 8**
 - Lateral e’ ≥ 10
 - LA < 34 ml/m²
 - Normal function

- **Septal > 8**
 - Lateral e’ ≥ 10
 - LA ≥ 34 ml/m²
 - Normal function, Athlete’s heart or constriction

- **Septal e’ < 8**
 - Lateral e’ < 10
 - LA ≥ 34 ml/m²

 - E/A < 8
 - DT > 200 ms
 - Av. E/e’ ≤ 8
 - Ar - A < 0 ms
 - Valsalva Δ E/A < 0.5
 - Grade I

 - E/A < 0.8 - 1.5
 - DT 160 - 200 ms
 - Av. E/e’ 9-10
 - Ar - A ≥ 30 ms
 - Valsalva Δ E/A ≥ 0.5
 - Grade II

 - E/A ≥ 2
 - DT < 160 ms
 - Av. E/e’ ≥ 13
 - Ar - A ≥ 30 ms
 - Valsalva Δ E/A ≥ 0.5
 - Grade III

Mandatory Parameters in RED

- Diastolic function will be reported as indeterminate when paced.
- In Atrial fibrillation diastolic function reported as indeterminate. When average E/e’ > 13, increased left atrial pressure is present.
- Diastolic function should be reported as indeterminate in the presence of severe mitral annular calcification (MAC) prosthetic mitral valve.
8. Minimum data elements should be indicated in the final report.

 a. Must include patient demographics, echocardiographic findings and summary. See Appendix 2 for narrative that should go in the summary

 b. Each of the below structures should be characterized by size (volume), function and measurement

 - Left ventricle
 - Left atrium
 - Right atrium
 - Right ventricle
 - Aortic valve
 - Mitral valve
 - Tricuspid valve
 - Pulmonic valve
 - Pericardium
 - Aorta
 - Pulmonary artery
 - Inferior vena cava
 - Pulmonary veins
 - Interatrial septum
 - Interventricular septum

9. Diastolic function should be reported in all cases of suspected heart failure in patients with sinus rhythm. In Atrial fibrillation filling pressures reported as elevated when mitral DT 150 msec or E/e’ ≥ 13-15. Diastolic function should be reported as indeterminate in the presence of severe mitral annular calcification (MAC) prosthetic mitral valve.

10. Emergent/Stat final echo report ideally should be available to review within 24 hours.

11. Non-urgent/routine final echo report ideally should be available to review within 48 hours.

12. Final report should be processed and forwarded to the most responsible physician within 7 days from the time the test was interpreted.

13. Each hospital should have a policy for reporting critical values and a method to communicate these findings to the referring physician.
14. All health authorities must strive to meet the Canadian Cardiovascular Society
Echocardiography accessibility recommendation guideline for:
 a. Emergent:
 i. Defined by: a patient being: hemodynamically unstable with suspected
certain cardiovascular conditions (eg, pericardial effusion with tamponade,
mechanical complications, post-myocardial infarction
 ii. The maximum medically accepted wait time for emergent echocardiograms is
<24hrs
 b. Urgent/Semi-Urgent:
 i. Defined by: critically ill patients who do not meet the definition of emergent
and patients with a condition that could deteriorate rapidly (eg, symptomatic
aortic stenosis)
 ii. The maximum medically accepted wait time for urgent/ semi urgent
echocardiogram is 7 days
 c. Scheduled/non-Urgent:
 i. Defined by: all patients who do not fall into the previous categories (eg,
asessment of murmurs in asymptomatic individuals, assessment of left
ventricle mass)
 ii. The maximum medically accepted wait time for scheduled/non urgent
echocardiogram is 30 days.

Position Statement

The Heart Failure Diagnostic Imaging Working Group believes the American Society of
Echocardiography (ASE) guidelines are too complex for routine clinical practice in British
Columbia [in particular the diastology protocols]. Therefore, they were adapted by Jonathan
Tang and Ellamae Stadnick and the Principles to Ensure Best Practice for Heart Failure
Echocardiography Services in British Columbia document will set the standard for Echocardiology
Service in British Columbia (BC). The Heart Failure Diagnostic Imaging Group supports
hospitals that are unable to meet standards because of human resource and/or equipment
issues. The Imaging Group will consider setting up traveling clinics to remote locations in the
province to facilitate optimum echocardiography service.
Appendix 1 (Adapted from: American Society of Echocardiography Guidelines)
(Adapted by: Jonathan Tang and Ellaemae Stadnick)

Echocardiographic Assessment of Heart Failure

Recommendations for measuring and reference values for the following:

- Right Atrium
- Right Ventricle Wall Thickness
- Right Ventricular Outflow Tract
- Right Ventricle Dimensions
- Right Ventricle Systolic Function
- Right Atrial Pressure
- Peak Systolic Pulmonary Pressure
- Left Atrial Volume
- Left Ventricle Dimensions and Mass
- Left Ventricle Ejection Fraction

Right Atrium

How To:
- Obtain apical-4 chamber, optimizing view of the right atrium (RA)
- Freeze image at the end of ventricular systole when the atrial dimensions are largest, prior to tricuspid valve opening
- Minor axis is measured from the mid- RA free wall to the interatrial septum
- Major axis is measured from the TV annulus to the superior RA wall
- Area is measured by tracing the RA being sure not to include the IVC

Normal Values:
Minor Axis \(\leq 44 \) mm
Major Axis \(\leq 53 \) mm
Area \(\leq 18 \) cm\(^2\)

Pitfalls:
- Normal values indexed for body surface area are not available
Right Ventricle

Right Ventricle Wall Thickness

How To:
- Obtain a subcostal view of the right ventricle (RV)
- Place M-mode cursor through the RV
- Measure RV wall thickness at end-diastole (onset of QRS) when it is the thinnest

Normal Value: \(\leq 5 \text{ mm} \)

Tips:
- Zoom on image to decrease measurement error
- Careful to avoid measuring epicardial fat

Right Ventricle Outflow Tract (RVOT)

How To:
- Obtain a parasternal short axis view
- Measurements are made at end diastole
- The proximal RVOT is measured from the inner edge of the anterior RV wall to the inner edge of the aortic valve
- The distal RVOT is measured at the level of the pulmonary valve

Normal Values:
- Proximal RVOT \(35 \text{ mm} \)
- Distal RVOT \(27 \text{ mm} \)
Right Ventricle 2D

How To: - Obtain an apical-4 chamber view focused on the RV
- The true LV apex should be included along with the tricuspid and mitral valves
- The left ventricular outflow tract (LVOT) should not be visible
- Adjust transducer to obtain the largest RV dimension
- Measurements are obtained at end-diastole
- Measure the base of the RV from the inner edge of the interventricular septum to the inner edge of the lateral wall of the RV
- Qualitatively the RV should not appear larger than the LV and it should not share the apex; either of these indicate either RV enlargement or an under filled LV

Normal Value: Basal Width ≤ 42 mm

Pitfalls: - Normal values indexed for body surface area are not available
- Large sources of error are possible if 4-chamber view is not optimized to assess the RV
Right Ventricle Systolic Function

A. Tricuspid Annular Plane Systolic Excursion (TAPSE)

How To:
- Obtain an apical-4 chamber view optimized to assess the RV
- Place M-Mode cursor through the lateral tricuspid annulus
- Measure the maximal longitudinal distance from end-diastole to peak systole

Normal Value: ≥ 16 mm

Pitfalls:
- TAPSE assesses longitudinal shortening and will not identify systolic dysfunction not involving the RV base

B. Pulse-Wave Tricuspid Valve Annulus Velocity

How To:
- Obtain an apical-4 chamber view optimized to assess the RV
- Place PW Doppler on the basal RV free wall
- The systolic wave is referred to as S'

Normal Value: ≥ 10 cm/sec

Pitfalls:
- This measurement is not validated in the elderly
Right Atrial Pressure

How To:
- Obtain a sub-costal view of the inferior vena cava (IVC)
- Measure diameter at end expiration
- Measurements are made 0.5-3 cm proximal to the RA ostium and proximal to the junction of the hepatic veins
- Measure collapse with patient ‘sniffing’ or upon deep inspiration

![Ultrasound of inferior vena cava and right atrium](image)

Normal Values:
IVC ≤2.1 cm with inspiratory collapse > 50 %: 3 mmHg
IVC >2.1 cm with inspiratory collapse < 50 %: 15 mmHg

Tips:
- If neither category above applies estimate RAP at 8 mmHg and look for secondary indices of elevated RAP such as diastolic dominant hepatic vein flow, tricuspid E/E’ >6 or a restrictive right sided inflow pattern
- RAP measurements are not validated in ventilated patients
- IVC may be dilated in athletes (normal variant)

Pulmonary Artery Pressure

How To:
- In the absence of RVOT or pulmonary stenosis:
 \[RVSP = 4v^2 + RAP \]
 \((v = peak \ tricuspid \ regurgitation \ velocity)\)
- Obtain the peak tricuspid regurgitation velocity by aligning Doppler signal parallel to the regurgitant jet in multiple views
- May not be accurate with severe tricuspid regurgitation
- Contrast (saline) may be used to enhance TR jet envelopes

Normal Value: < 35 mmHg (assuming normal RAP)
Left Atrial Volume

How To:
- Area Length Method
- Obtain apical-2 and apical-4 chamber views
- Measure area in both views (avoid appendage and pulmonary veins)
- Measure length in both views from back wall to level of mitral annulus

Left Atrial Volume = $\frac{8}{3} \pi \left[\frac{(A_1)(A_2)}{L} \right]$

(L) is the shortest of either the A4C or A2C lengths

Normal Value: 22 ± 6 ml/m2
Left Ventricle

LV 2D Dimensions and Mass:

How To:
- Linear Method
- Obtain parasternal long axis view
- Measure the interventricular septum (SWT), posterior wall (PWT) and left ventricular internal dimension (LVID) at end diastole at the midcavitary region at the level of the chordae above the papillary muscles (level of mitral valve leaflet tips)
- Left ventricular systolic dimension should be measured at the same time
- Either M-mode or 2D measurements have been validated (M-Mode measurements should be made perpendicular to the long axis)

LV mass = 0.8 x \{ 1.04 [(LVIDd + PWTd + SWTd)^3 – (LVIDd)^3] \} + 0.6 g

Normal Values:

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>< 95 g/m^2</td>
<td>< 115 g/m^2</td>
</tr>
<tr>
<td>LVIDd</td>
<td>39 – 53 mm</td>
<td>42-59 mm</td>
</tr>
<tr>
<td>LVIDdi</td>
<td>24 – 32 mm/m^2</td>
<td>22-31 mm/m^2</td>
</tr>
</tbody>
</table>

Pitfalls:
- The mass calculation assumes a prolate ellipse geometry for the left ventricle, and will not be accurate as the LV dilates and assumes a spherical structure
- The mass calculation will not be accurate if there is asymmetric septal hypertrophy
- Small discrepancies in measurements will result in large errors as the values are cubed in the calculation
LV Ejection Fraction:

How To:
- Quantitative assessment should correspond with qualitative visual estimate
- Quantitative 2D Method (Modified Simpson’s Rule)
- End systolic (ESV) and diastolic (EDV) volumes are measured in both the apical 4 and 2 chamber views
- Requires adequate visualization of the endocardium
- Basal border should be drawn as a straight line between the lateral and septal leaflet insertion points in the mitral annulus
- Papillary muscles should be included in the volume

Ejection Fraction = (EDV - ESV) / EDV

Reference Values of Ejection Fraction:

- Normal: \(\geq 55 \% \)
- Mild Dysfunction: 45 – 54 \%
- Moderately Dysfunction: 30 – 44 \%
- Severe Dysfunction: < 30\%
Appendix 2

<table>
<thead>
<tr>
<th>Key Elements Required On An Echocardiology Final Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient information</td>
</tr>
<tr>
<td>First and Last name</td>
</tr>
<tr>
<td>MSP # or Unique hospital #</td>
</tr>
<tr>
<td>Date of birth</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Location: in patient OR out patient</td>
</tr>
<tr>
<td>BSA</td>
</tr>
<tr>
<td>Indication for the test</td>
</tr>
<tr>
<td>Area for free text</td>
</tr>
<tr>
<td>Referring physician information</td>
</tr>
<tr>
<td>Interpreting physician information</td>
</tr>
<tr>
<td>Date and time test</td>
</tr>
<tr>
<td>Ordered (don’t put in body of report but still collect)</td>
</tr>
<tr>
<td>Received (don’t put in body of report but still collect)</td>
</tr>
<tr>
<td>Performed (don’t put in body of report but still collect)</td>
</tr>
<tr>
<td>Interpreted (don’t put in body of report but still collect)</td>
</tr>
<tr>
<td>Final report generated/transcribed</td>
</tr>
<tr>
<td>Final report verified</td>
</tr>
<tr>
<td>Final report transmitted</td>
</tr>
<tr>
<td>Site and department study performed</td>
</tr>
<tr>
<td>Sonographer performing the exam</td>
</tr>
<tr>
<td>Initials only</td>
</tr>
<tr>
<td>Descriptor of study quality</td>
</tr>
<tr>
<td>□ Good □ Fair □ Poor</td>
</tr>
<tr>
<td>Clinical findings</td>
</tr>
<tr>
<td>Their relevance to the diagnosis</td>
</tr>
<tr>
<td>Quantitative values were applicable</td>
</tr>
<tr>
<td>Should identify the salient findings, any abnormalities that are correlated to the reason the study was requested</td>
</tr>
<tr>
<td>Descriptor for the values and comparison with previous echo values</td>
</tr>
<tr>
<td>When applicable all structures should be characterized by size (volume), function and measurement</td>
</tr>
<tr>
<td>• Left ventricle, Left atrium</td>
</tr>
<tr>
<td>• Right atrium, Right ventricle</td>
</tr>
<tr>
<td>• Aortic valve, Mitral valve, Tricuspid valve, Pulmonic valve</td>
</tr>
<tr>
<td>• Pericardium, Aorta</td>
</tr>
<tr>
<td>• Pulmonary artery (only if applicable)</td>
</tr>
<tr>
<td>• Pulmonary artery systolic pressure</td>
</tr>
<tr>
<td>• Inferior vena cava</td>
</tr>
<tr>
<td>• Pulmonary veins (only if applicable)</td>
</tr>
<tr>
<td>• Interatrial septum</td>
</tr>
<tr>
<td>• Interventricular septum</td>
</tr>
<tr>
<td>• Pericardial effusion (only mention if it is present)</td>
</tr>
</tbody>
</table>
References

